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ABSTRACT

The polarization potential plays a decisive role in shaping up the cross sections

in low-energy positron colhsions with atoms and molecules. However, its inclusion

without involving any adjustable parameter, is still a challange. Here we summarise

various other techniques employed so far for positron collisions and discuss a new,

nonadjustable and very simple form of the polarization potential for positron-atom

(molecule) colhsions below the threshold of positronium formation. This new po-

tential, recently proposed by us, is based on the correlation energy (eco,-_-) of a

single positron in a homogeneous electron gas. The eco,_ has been calculated by

solving the Schr_Sdinger equation of the positron-electron system and fitted to an

analytical form in various ranges of the density parameter. In the outside re#on, the

coot,- is joined smoothly with the corzect asymptotic form (-- 2-_,, where a0 is the
polarisibility of the target ). We tested this new positron correlation polarization

( PCOP ) potential on several atomic and molecular targets such as the At, CO,

and CH4. The results on the total and differential cross sections on these targets

are shown here alongwith the experimental data where ever they are available.

I. Introduction

In the positron(e +) scattering with multi-electron atom ( or molecule ), a true e+ polarization

potential is very difficult to incorporate without involving any adjustable parameter. Two simple

stratagems have been quite popular: one, to use the electron polarization potentiM as such for the
corresponding positron collisions and two, to employ a phenomenological form under the tuning

procedure. However, both approaches are unsatisfactory and usually fail at the differential cross

section (DCS) and annihilation parameter ( Z,yy ) level; although one may be succesful in getting

good agreement for the integral quantities.

It is only recently that several theoretical attempts have been made to consider the polar-

ization of the target atom ( or molecule ) by the e + at the ab initio level(I-s); however, these

rigorous calculations are not totally parameter-free and suffer from including near-the-target non-

adiabatic effects and also the correct values in the asymptotic region. Although, the question of

nonadiabaticity may not as crucial for the positron projectile as it is for the electron case ( see

later ). The polarization effects dominate the scattering process at very low energies ( below about

5 eV ). At somewhat higher energies ( roughly above 5 eV ), the DCS's are still quite sensitive to

such charge distortion effects. Here we are concerned only at low energies, particularly below the

positronium formation and/or any electronic excitation thresholds. For the one-electron positron-

hydrogen case, the issue of polarization potential has recently been discussed by Abdel -Raouf 9.

A very recent and comprehensive review z° on the e+-molecule scattering gives details on various

approaches used so far to include polarization effects in positron scattering.
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It is, therefore, always desirable to find some kind of simple form of the polarization force

without involving any fitting parameter. At low impact energies, where the impinging positron is

moving very slowly relative to the target electron, the distortion of the electronic charge cloud is

quite different than the corresponding electron impact case. Asymptotically, the polarization po-

tential can be assumed to be the same for both the projectiles ( which is true up to the second-order

perturbative theory only ); however, at near-the-target encounters, both the charged projectiles

interact differently with the charge cloud of the target. In this talk, we discuss a new parameter-free

form of an approximate e+ polarization potential which is simply a function of the target charge
density and in addition is energy-independent.

A summary of earlier usage of various modets for polarization potential in positron-molecule

collisions is given by Morrison and coworkers (_-2) Recently, Elza et als have investigated various

aspects of polarization/correlation effects in low--energy positron-N2 collisions via a two-parameter

model. Tennyson 3 and Tennyson and Morgan 4 have applied the R-matrix technique to positron-
molecule (H_, N_ and CO ) collisions. However, the inclusion of polarization force in all these the

so called ab initio methods is not either satisfactory nor complete. From numerical point of view,
these procedures are not easy to apply for a general positron-molecule system. The collision of

positrons with polyatomic targets is even more complicated. We (a1-12) have reviewed the situation

on the polyatomic molecules with respective to the polarization effects and the comparison with
the experimental data. : .....

In the next sectionlwedescribe the new positron polarization potential and in section IIi, the

numerical techniques are summarised. In order to demonstrate the success of the new positron
correlation polarization (PCOP) potential, in section IV, we present some calculations on the

differential and integral elastic cross sections for the atomic ( Ar ) and molecular ( CO and CH4 )
targets below the positronium ( Ps ) formation threshold ( i.e. E < 10 eV ). Concluding remarks
are given in the last section.

II. The New Positron-Correlation-Polarization (PCOP) Potential

Asymptotically, for a general e+-molecule collision system, the polarization potential behaves
as

, . ,SOo 4 so 4(4) sp]_pot(r,e,¢) = _-_r4tc_0(4zr)_ + _2(gTr)} +

where the S_ q is a real spherical harmonic ( see Ref. 13 for its definition and various properties ),

(r, 8, ¢) are the coordinates of the projectile referring to the center of the target and the spherical

(s0) and nonspherical (as and a_ ) polarisibilities are expressed in terms of the polarisibility tensor
aii of the target, namely,

1 2 1 1
_o = $(_ + _= +,_aa); ,_ = _(-aa - _ - _22); ,_ = _,a -_=.

The above form ( Eq. 1 ) of the polarization potential is accurate at large r values up to the

second-order perturbation theory. The problem arises when the projectile is near the target. A

simple way to remedy this difficulty has been to multiply Eq. (1) by a cut-off function depending

upon some adjustable parameter; however, this approach is unsatisfactory, although the results may

be forced to agree with observations ( see for example, Darewych 14, Horbatschand DarewychXS)_
For positron collisions, most of the calculations prior to 1984 used an electron polarization potential

(EPP) assuming that such polarization effects are not sensitive to the sign of the-cIa-arge of the

projectile. Morrison and his group ( Morrison et all; Morrison2; Elza et al s ) strongly :advocated
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for a need to generate a true positron polarization potential (PPP) rather than employing the
EPP; they strengthened their point by presenting detailed calculations on the positron-H2 and N2

systems and comparing them with experimental data. Although earlier calculations on the positron

collisions using the EPP gave good results as compared to experimental or, values, however, these

theoretical results are generally poor at low energies and not qualitatively good at all for differential

cross sections at any energy (ls-17). Unfortunately, the more rigorous calculations based on the

variational polarised-orbital theories are not satisfactory either; Elza et Ms have to introduce a

cut-off function in both the short and long ranges and adjust two parameters to make theory and

measurement in close agreement. Even in a more sophisticated R-matrix approach, an accurate
inclusion of polarization effects has not been achieved yet (3-5).

Here, our goal is to look for a computationally simple form of the positron polarization potential

which is different from the corresponding electron potential and virtually free from any adjustable

parameter. The basic philosophy of the present approach is similar to the method of O'Connel

and Lane is for the case of electron scattering based on the correlation energy of the target in the

presence of an incoming electron. The present positron polarization potential is also based on the

correlation energy of a localized positron in an electron gas and its hybridization with the correct

asymptotic form. Here, we think the incoming e + as a charged impurity at a fixed distance in

an homogeneous electron-gas. In positron annihilation experiments, a fundamental question to be

asked is how the electron-positron interaction distorts the electronic structure of the system under

investigation.

The e + correlation energy eco,.,, in an electron gas has been evaluated phenomenologically (19-2°)

as well as using the Bethe-Goldstone type approach 2x. Recently, Arponen and Pajanne 22 have

applied a completely new approach to the problem of a light impurity in an electron gas. In their

method 22 the electron gas is described by a set of interacting bosons representing the collective

excitations of the random-phase-approximation (RPA). Very recently, Boronski and Nieminen 23

have described the density functional theory of the electron-positron system and presented the

results on the positron-electron correlation energy as a function of the density parameter rs ( see

later ) for different n+(r)/n_(r) ratios including the case of one positron in a homogeneous electron

gas. Here n+ and n_ denote the densities of positrons and electrons respectively.

The physical picture of the positron correlation in an electron gas is as follows. When the

incoming positron enters the target electronic charge cloud, we can assume the positron as localized

instantaneously and correlating with the surrounding electrons of a given density, n_ (r). The wave

function of the positrons in such an electron-positron plasma, can be written as 23

= (2)
--_ V2¢+(r) + [#_c(n+ (r)) - ¢(r) + *n__(r)

here #_¢ is the exchange-correlation potential ( which is zero in the present one-positron case

), ¢(r) is the Hartree-Cou]omb potential and E_ -p is the positron--electron correlation energy

functional. The Eq. (2) has been solved numerically in a self-consistent manner 23. Based on the

paper of Arponen and Pajanne 22, Boronski and Nieminen 23 have given explicit expressions for the

positron-electron correlation energy, e¢o,_(r,) interpolating it for the whole radial region. These
expressions are obtained without giving any divergence problems in the calculations of annihilation

rates over the entire range of the density parameter r, ( Kallio et al24). In their work, Arponen

and Pajanne 22 have developed a new approach to solve the problem of a charged impurity in an

electron gas. The correlation energy, e,o,,-, is calculated from the ground-state expectation value

of the Hamiltonian which describes the electron gas plus the incoming positron fixed at a distance.

In the evaluation of e,o,.,., the positron-electron interaction has also been considered ( see Eq. 2 ).

The analytic interpolated expressions for the eco.,- in the whole range of the density parameter r,

(4 3_rr,p(r) = 1, where p(r) is the undistorted electronic density of the target ) are given as follows:
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1.56

2eco,,(r,)- _ + (0.0511nr,- 0.081)lnr_ + 1.14; r, < 0.302, (3a)

2eco.,.(r,) = -0.92305 -
0.05459

r2 ; 0.302 < rs _< 0.56, (3b)

13.15111 2.8655

2e_o,.,(r,) = (r, + 2.5) 2 + (r, + 2.5) 0.6298; 0.56 < rs _< 8.0, (3c)

and finally,

2e¢o,,(n(rs)) = -179856.2768n 2 + 186.4207n- 0.524; 8.0 < r, < oc, (3d)

where n(r,) is the electronic density corresponding to the density parameter r,.

The PCOP potential, defined as a functional derivative of the correlation energy with respect
to p(r), can be derived conveniently from the following equation in terms of functional derivative
of the density parameter 24,

= 1 - 5r,

for

(4)

Finally, we obtain the following form of the V=o,.,(r) ( in atomic units ) from Eqs. (3)-(4):
r, _< 0.302,

-1.30
- + (0.0511n(r_)- 0.115)ln(rs)+ 1.167; (sa)

for 0.302 < r_ < 0.56,

and for 0.56 < r, < 8.0,

0.09098

2Vco,.,.(r) = -0.92305 - r2 ; (Sb) "
$ _ _.

8.7674r_ -13.151 + 0.9552r_ 2.8655

2Vco,,(r) = (r, + 2.5) 3 + (r, + 2.5) 2 = 0.6298. (5c)(r, + 2.5)

Note that for moiecul_r Systems the short:-range eco,.,(r_) is to be divided by a factor of

(2g + 1)/v/4"_ to account for molecular orientation not considered by Arponen and Pajapne n. Here

we do not worry about the 8.0 __ % < oo region, as this range is beyond the crossing point where

the polarization potential is accurately described by the asymptotic term ( Eq. 1 ). It is to be
noted that the interpolation formulae for the correlation energy ( Eqs. (3)) were formulated in o

such a way that for the limit r_ ---+oe , the e_o,. reaches the value of Ps- ion energy, i.e., -0.262

a.u.. In the present positron scattering case, we realize that in the r8 --* oc limit, the correlation _:--
energy approaches the correct asymptotic form of the polarization potential ( the same prescription
as suggested by O'Connel and Lane is ).

IIPCOPf._
Thus, the PCOP interaction potential, "pol t-l, for the e+-molecule/atom system is given

by,

vfCOV, , _ol [r) = t_o,.,(r), r < re,
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/Tand by Eq. (1) for the r >_ rc range. Here re is the radius where the I co_ and -a0/2r 4 ( or

ct2/2r 4 ) terms cross each other for the first time. In addition, we will also report the similar

cross sections under the ECOP potential, which has recently been employed for positron-molecule

scattering ( Jain (26-27), Gianturco et al2s ). Even though the EPP results are encouraging for

some molecular targets ( Jain and Thompson 20 ), we feel that it is more appropriate to find a true

positron polarization interaction.

The new PCOP potential ( Eq. 6 ) has several favourable points worth mentioning here:

first, it involves a true correlation of the incoming positron with the target electrons at. short

distance encounters and exihibits correct behavior in the asymptotic region; second, it is very easy

to calculate and convenient to incorporate into any model potential approach; third, it is quite

different from the corresponding EPP and finally, ( see later ), it gives qualitative good results for

the total cross sections for several atomic and molecular targets as compared with experimental
data.

III. Scattering Parameters

In fact, the numerical techniques to solve the scattering equation for the e + wave function

are standard as employed for the electron scattering case. For the atomic target ( Ar ), we use

the variable-phase-approach (VPA) z° in order to determine phase-shifts at each energy; more

details of the VPA approach are given in Ref. 31. The optical potential of the e+-Ar system is

determined very accurately from the numerical Hartree-Fock wave functions of the target 32. In

order to preserve numerical accuracy, convergence tests were carried out with respect to radial
integration and number of partial waves retained in the evaluation of various cross sections is.

For the diatornic molecule (CO) case, the scattering equations are set up in the single center

formalism under the body-fixed (BF) adiabatic-nuclei-approximation (ANA). The final coupled

scheme is formulated in the integral e_quation method z3. More details for the positron-CO calcula-
tions can be found in our earlier t26-27) and recent iv papers.

Assuming the CO molecule in its ground electronic ( l_r22¢23_r24c_21_r4; 1_ ) and vibrational

states, the equation of the continuum positron wave function, P(r) in the single center formalism

under the BF ANA can be written as,

IV2+ k2- 2v(r)]P(r) = 0, (7)

where k 2 is the positron energy in Rydbergs and the interaction potential V(r) includes the repulsive

static and attractive polarization forces. Expanding the V(r) in terms of Legendre projections, v_,

V(r) = Vst(r) + Vpoz(r) = _ [vST(r) + v_°C(r)]Px(cosO),
),=0

(8)

we obtain the following set of coupled differential equations for the continuum function P(r) for a

given symmetry A,

[__r2d2 t(tr 2+ 1) + k2]P_0(r ) = _ V,t,(r)p_lo(r) ' (9)
t'

where the potential matrix Vet, is determined as usual 34. Here A corresponds to E(A = 0), II(A =

1), A(A = 2), <I'(A = 3) etc. symmetries. There are several methods to solve equation (9), but we
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adopt an integral-equation technique by converting the differential equation (9) into an integral
equation 33,

Z/oP_o(r) = jt(kr)Stto + Gt(r,r')Vu,(r')P_to(r')dr', (10)

l'

where the Green's function is defined by

Gl(r,r') = k-a[_?dkr)jt(kr ') - jt(kr)_t(kr')], (11)

in which je(kr) and _?,(kr) are Riccati-Bessel functions. Note that in the expansion ( Eq. 8 ) of
polarization term, we have only )_ = 0 and 2 terms.

The CO molecule is a polar molecule which needs special attention in a BF adiabatic-nuclei

theory where the forward DCS and _rt are undefined 35. In this respect, we employ the multipole-

extracted-adiabatic-nuclei (MEAN) scheme of Norcross and Padial 36, in which the DCS for the

d --* J' rotational transition are given as

dc ,F B A k d, _._(]j,)_ (J]') +  [c(JI, J'; 00)]
l,

E (Bx,,,- BF_BIA)p_(cosO), (12)
X=0

where the first term is the usual closed form for the (JJ') rotational excitation DCS in the space-

fixed first-Born-approximation (FBA); kj and k j, are respectively the wavevectors in the initial and

the final channels; C (...) is a Clebsch-Gordan coefficient; It is the angular momentum transferred

during the collision; B_,z, are the DCS expansion coefficients and B FBAx,_, are the corresponding

quantities in the FBA evaluated in the BF frame of reference. The channel vectors are related by
the relation,

k_- @ = B[J'(J' + 1)- S(,l + 1)], (13)

where B is the rotational constant of the CO molecule. Finally, the expressions for total ( a,JJ' )

and the momentum transfer ( o,,_-JJ') cross sections are evaluated from equation (11) for any (JY')

transition. Total ( summed over all final rotational states Y' ) integrated ( _rt ) and momentum
transfer ( a,,_ ) cross sections can easily be obtained from

- Z (14)O"t or rn -- O't o. m ,

J,

: However, for a proper comparison wiih experiment, we average the _rt and (r,,_ over the Boitzmann

distribution of rotational states at 300 K ( represented as (cr,) and (era)). This is quite easy since

in the present energy region the sum over J' in equaton (14) is insensitive to d.

Finally, for a p01yatomic molecule, we employ totally a different set of computer codes to

obtain scattering parameters. The details are given elsewhere (a3,37). For a p0b;atomic target, it is

again convenient to make use of the ANA and set up the scattering equations in the single-center-

expansion scheme under the close-coupling formalism. The equatio n fo r the scattered positron
funct-ion P(r) is the Same as given in Eq. (7), [_-owever, now the single-center-expansion scheme

is quite different. The angular basis functions belong to the irreducible representation (IR) of the

molecular point group. The P(r), i_t and _'_o_ are expanded around the center-of-mass (COM) of

the molecule in question. For example, the P(r) is expanded as 13,
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where the X_'_' are symmetry-adapted angular functions belonging to a particular irreducible rep-

resentation p# of the molecular point group. The static potential V_, is given by

N M

_/_t(r) = f I¢oi 2 E Jr- rjl-ldrldr2-..drN - E Zi[r- Ri1-1, (16)
j=l i=1

where ¢0 is the target ground state

electron spin orbitals ¢_(r), N is the
molecule.

wavefunction given as a single Slater determinant of one-
total number of electrons and M the number of nuclei in the

Finally, the scattering amplitude for e + with initial direction l_ and the final direction _ is

(17)

where the sum being over g, h, t', h', p and >. The S matrix is related with the K matrix in the usual

fashion. The amplitude ( Eq. 17 ) is defined in the BF frame of reference. In order to transform

it into the space-fixed (SF) or the laboratory frame coordinate system, we employ the standard

technique in terms of rotation matrices _a, R(a,/3,3') ( the (a/37) are the three Euler's angles ). If

r' represents the coordinates of the positron with respect to SF coordinate system, the transformed

amplitude, f(l_._'), is employed to determine the rotationally inelastic transition amplitude under

the ANA theory, i.e.,

f(i _ f)= (ilf(k._';a37)lf),

where {i[ and <f[ are respectively the initial and final rotational eigenfunctions. The total elastic
cross sections are obtained by summing over all final rotational states and averaging over all initial

states. The expressions for the differential, integral and momentum transfer cross sections are given

for general non-linear polyatomic molecules in Ref. 13.

In the present CH4 case, we do not face any convergence problem in the summation over

various angular momentum quantum numbers. In fact, even the DCS's can be obtained easily with

proper convergence within a reasonable size of the scattering matrix. For more details about the
actual numerical parameters we recommend our previous paper 2°. In the present results on the

positron-CH4 collisions, we have kept the same single-center expansion and K-matrix parameters
as described in Ref. 29.

Jain and Thompson 29 used three different approximations for the polarization interaction; all
the three models were exactly the same as employed for electron scattering (zs-4°) However, the

most successful was the one based on the second-order perturbation theory under the Pople Shofield

method 41 in which the distortion in each molecular orbital is the same. The non-adiabatic effects

were included via the non-penetration criterion of Temkin 4_. This electron polarization potential 4°

( to be denoted by 3T ) has so far been quite successful in positron-CH4 collisions. Unfortunately,

the JT potential has never been employed for any atomic system; however, it has been employed for
the e+-N2 case 43 with fair success. The other two EPP used by Jain and Thompson 2° were based

on the asymptotic form multiplied by the cut-off function. Although the use of non-penetrating

scheme for the positron case may be questionable, however, we argue here that the non-adiabatic
effects in e+ case are not much effective due to relatively smaller local kinetic energy of the impinging

positron in the vicinity of the target. Therefore, we emphasize here that in any polarised-orbital

variational approach, the non-adiabatic correction may not be taken very seriously. In the findings

of Elza et als, these non-adiabatic effects seem to change the results; however, it is hard to draw

any conclusion since they introduce fitting parameters which makes physics less clear.
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Fig. 1. Various polarization potentials for the e+-Ar system. The po-
tentiMs PCOP1, PCOP2 and ECOp are shown, respectlvely, by soB&

dashed and 1ong-dashed Iines. The various notations are explained
in the text. In the inset are shown the totM optical potentials ( sum
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lzPCOP2, dashed line, V_ _. liPCOPl.ous models: solid line, V,t + • poZ , "vo_ ,

long-dashed Bne. Vs¢ - V_ c°ppol

IV. Results and Discussion

First, we display the new PCOP terms in Fig. 1 for the e+-Ar system. We have considered
two forms of the PCOP model; one, the correlation potential defined by Eq. (6) ( to he denoted by

PCOP2 ) and two, the correlation energy itself ( Eq. 3, to be denoted by PCOP1 ). Both the PCOP1

and PCOP2 terms are plotted in Fig. 1. Also shown in this figure is the corresponding ECOP

potential. We see a significant difference between the ECOP and PCOP curves. In general, the

PCOP is stronger then the ECOP approximation. This simply means that the e+ - e- correlation

energy is stronger, thus giving rise to a more attractive polarization potential. It seems realistic

since the e+ is expected to distort the target charge cloud deeper due to strong correlation of

electron and positron particles. A similar situation exists for rfiolecular targets ( CO and CH4 ) (

not shown ).
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Fig. 2 Differential cross sections for the e+-Ar elastic coll,'don at 8.5 eV.
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modal; long-dashed curve, ECOP model. The experimental points
are taken from Refs. 44 and 45.

The total optical potential shown in the inset of Fig. 1 is a sum of repulsive static and attractive

polarization terms; thus there is a zero-potential point and an attractive well. The position of the

zero-point potential and the shape of the attractive well decide the penetration and sign of various

partial waves. Here the role of polarization interaction is important and the low-energy scattering

is strongly influenced by these cancellation effects not present in the electron scattering case. Thus
the form of the polarization potential in the zero-potential and the attractive well region is very

crucial to determine the scattering process.

Fig. 2 illustrates the DCS for the e+-Ar system at 8.5 eV alongwith the ECOP results and the
measurements of Refs. 44-45. We see a significant qualitative improvement represented by these

PCOP curves. The dip in the experimental DCS around 500 is neatly reproduced by the new model,

while the ECOP dip occurs at smaller angle (300). We have not shown other calculations 46-49 due

to their semi-empirical nature. We have seen similar agreement between theory and experiment

at other energies ( lower and higher than 8.5 eV ) also 16. In order to further see the success of

the PCOP model at lower energies, we have calculated the scattering length in the zero energy

limit. The value of the PCOP scattering length is -4.89 (au), which compares very well with the

experimental value 5° of -4.4 4- 0.5 (au); the ECOP model gives this value only 1.7 (au). It is thus

quite clear that in this low energy limit a true positron polarization interaction makes big difference

in the scattering parameters.
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.... We _'_:-:nowdiscuss--:- our e+-CO calculat]oL:on the (_r,) parameter. Fig. 3 shows the present PCOP

(_r_} alongw]th theECOP 2s, R-matrix 4 and the experimental (5z-52) results. We have shown two

versions of the present'PCOP ( Eq. 6 ) model: one, with the present theoretical value_ of the_dipole
moment (D=0.099a.uO, shown as- dashed curve in Fig. 3 and two, by using the experimental

value (D-0.044 au), shown as a solid line. Below 4 eV, the use of theoretical value of the dipole

moment makes large changes in the (_r_). The R-matrix results do not compare well with the

measurements; one reason being that they employ their theoretical dipole moment value in the

MEAN approximation and the second reason is related with their polarization force which still

needs to be improved sa. The inclusion of the polarization force makes Iarge c_nanges ( about a
_cto_r_of two or more ) in-t_e pure sta/ic result-s_It seems that the ECO15 approxima(ion is-better

a-(higher i ]_ _> 2 e$' _)energies: however, this conclusion may not be true as the two sets ofDCS's

differ significantly and we expect that the PCOP DCS's are better than the cooresponding ECOP
cross sections 17
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Fig. 4. Positron-CO DCS at 2 eV in the PCOP (solid curve ) and ECOP

( dashed curve )_6 polarization models.

In order to see the qualitative differences between the ECOP and PCOP models for the positron

collisions with CO molecules, we have shown in Fig. 4, the differential cross sections at 2 eV. We

see a qualitative difference between the two curves of Fig. 4. The dip in the ECOP approximation

occurs at lower angles while the PCOP dip in the DCS's curve occurs at somewhat larger angles;
the difference between the positions of the two dips is about 20 °. The disagreement between these

two polarization model is seen at all angles ( Fig. 4 ). It is interesting to note that the total cross

sections at this energy is almost same in both the PCOP and ECOP approximations. Thus. the

integral cross sections are sometimes confusing and therefore a theoretical model should be judged

from the angular functions which are more sensitive to model potential results. It would be very

interesting to see the position of the dip in an experimental investigation. So far, we believe that

the PCOP dip is more realistic.
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Fig_ 5. The positron-CH4 _r_ cross sections using the PCOP , ECOP 2s

and JT "z9 theoretical models. All the curves are labelled with respect

to all these approximations. The exper/mentad data are taken from
Refs. 54 and 55.

From Fig. 3, we thus see that the PCOP model is quite successful in reproducing the ex-

perimental data. particularly at low energies where the ECOP calculations totally fail. At higher
energies ( above 3 eV ) where the ECOP approximation seems to work well, the difference_oetween

the two sets o_DCS is significant ( See-Fig. 4 ); for example, at 2 eV, the positions of thedipsin

the ECOP and PCOP curves occur at 400 and 500 angles respectively. - _ ___

l_g_t now t_ere are no other DCS's ( the0re_ic_-or experimental ) available]'or_fom-p_fi-s-on

for the positron-CO elastic collisions. It would have been interesting to have a comparison between

the PCOP and the R-matrix angular functions. It is possible that the DCS's for the positron-CO

system be measured in the laboratory in future. Only then one can conclude finally about the

usefulness of the PCOP model in the e+-CO case. In passing, we wouldfike to mention that

at further lower energies ( below 1 eV ) the difference between various DUS calcuYations maybe

dramatic_due to a stronger dependence of the collision dynamics on the polarization/correlation
effects. - .......
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Fig. 5. The positron-CH4 o'_ cross sections using the PCOP . ECOP 28

and JT ¢9 theoretical models. All the curves are labelled with respect

to all these approximations. The experimental data are taken from
Refs. 54 and 55.

From Fig. 3, we thus see that the PCOP model is quite successful in reproducing the ex-

perimental data, particularly at low energies where the ECOP calculations totally fail. At higher

energies ( above 3 eV ) where the ECOP approximation seems to work well, the difference between
the two sets of DCS is significant ( see Fig. 4 ); for example, at 2 eV, the positions of the dips in

the ECOP and PCOP curves occur at 40 ° and 50 o angles respectively.

Right now there are no other DCS's ( theoretical or experimental ) available for comparison

for the positron-CO elastic collisions. It would have been interesting to have a comparison between

the PCOP and the R-matrix angular functions. It is possible that the DCS's for the positron-CO

system be measured in the laboratory in future. Only then one can conclude finally about the

usefulness of the PCOP model in the e"--CO case. In passing, we would like to mention that

at further lower energies ( below 1 eV ) the difference between various DCS calculations may be

dramatic due to a stronger dependence of the collision dynamics on the potarization/correlati0n
effects.
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Finally, in Fig. 5, we demonstrate our e+-CH, cr, values along with experimental points. Also

shown in this Fig. 4 are the calculations using EPP models of Jain and Thompson _9 and Gianturco

et al2s. The measured data are taken from Dababneh et al s4 and Sueoka and Mori 55. Again we
see that the new PCOP gives very encouraging results as compared to other theoretical models

based on the EPP. However, if we look into the corresponding DCS ( Fig. 6 ) at 6 eV, the three
models give totally different type of results. We need experimental data on the DCS in order to

see which polarization approximation describes the collision properly. It is clear_'om Fig. 6 tlaat

even if there is some agreement in the total cross sections, the DCS's may be quite different both
in quality and quantity.

V. Conclusions

We conclude that a true positron polarization approximation is essential to investigate the
low-energy positron collisions with atoms and molecules. Even if the EPP and PCOP total cross

sections are identical, the DCS differ significantly. We are in the process to test the sensitivity of

the Z_yf parameter with respect to EPP and PCOP polarization models. We mention here that

in the positron scattering, the question of nonadiabaticity may not be as serious as in the case of
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electron collisions: the reasonbeing that the positron being repelled by the nucleusof the target is
not speededup in the vicinity of the target; thus reducing the non-adiabatic effects.

In this article, we have discusseda new parameter-free positron polarization potential which
is obtained by short range e + - e- correlation energy and the correct long range behaviour of the

polarization potential. It should be realized that the inclusion of correlation/polarization effects in

positron collisions is a very hard problem. In model approaches, such as the one discussed here,

one has to compromise with the local and energy-dependent form of the polarization against its

non-local and non-adiabatic nature. The use of model polarization potentials will still continue

due to their simplicity and significant success even at the DCS level. We emphasize that all the

positron polarization models should be tested with respect to differential cross sections and the

very low energy parameters such as the scattering length and the annihilation paremeter.
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